Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
PLoS Pathog ; 20(3): e1012069, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38452145

ABSTRACT

Mycobacterium tuberculosis (M.tb.) infection leads to over 1.5 million deaths annually, despite widespread vaccination with BCG at birth. Causes for the ongoing tuberculosis endemic are complex and include the failure of BCG to protect many against progressive pulmonary disease. Host genetics is one of the known factors implicated in susceptibility to primary tuberculosis, but less is known about the role that host genetics plays in controlling host responses to vaccination against M.tb. Here, we addressed this gap by utilizing Diversity Outbred (DO) mice as a small animal model to query genetic drivers of vaccine-induced protection against M.tb. DO mice are a highly genetically and phenotypically diverse outbred population that is well suited for fine genetic mapping. Similar to outcomes in people, our previous studies demonstrated that DO mice have a wide range of disease outcomes following BCG vaccination and M.tb. challenge. In the current study, we used a large population of BCG-vaccinated/M.tb.-challenged mice to perform quantitative trait loci mapping of complex infection traits; these included lung and spleen M.tb. burdens, as well as lung cytokines measured at necropsy. We found sixteen chromosomal loci associated with complex infection traits and cytokine production. QTL associated with bacterial burdens included a region encoding major histocompatibility antigens that are known to affect susceptibility to tuberculosis, supporting validity of the approach. Most of the other QTL represent novel associations with immune responses to M.tb. and novel pathways of cytokine regulation. Most importantly, we discovered that protection induced by BCG is a multigenic trait, in which genetic loci harboring functionally-distinct candidate genes influence different aspects of immune responses that are crucial collectively for successful protection. These data provide exciting new avenues to explore and exploit in developing new vaccines against M.tb.


Subject(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis Vaccines , Tuberculosis , Humans , Animals , Mice , BCG Vaccine/genetics , Tuberculosis/genetics , Tuberculosis/prevention & control , Tuberculosis/microbiology , Tuberculosis Vaccines/genetics , Vaccination , Genetic Loci , Cytokines/genetics , Antigens, Bacterial
2.
RNA ; 28(12): 1621-1642, 2022 12.
Article in English | MEDLINE | ID: mdl-36192133

ABSTRACT

Upf1, Upf2, and Upf3, the central regulators of nonsense-mediated mRNA decay (NMD), appear to exercise their NMD functions while bound to elongating ribosomes, and evidence for this conclusion is particularly compelling for Upf1. Hence, we used selective profiling of yeast Upf1:ribosome association to define that step in greater detail, understand whether the nature of the mRNA being translated influences Upf1:80S interaction, and elucidate the functions of ribosome-associated Upf1. Our approach has allowed us to clarify the timing and specificity of Upf1 association with translating ribosomes, obtain evidence for a Upf1 mRNA surveillance function that precedes the activation of NMD, identify a unique ribosome state that generates 37-43 nt ribosome footprints whose accumulation is dependent on Upf1's ATPase activity, and demonstrate that a mutated form of Upf1 can interfere with normal translation termination and ribosome release. In addition, our results strongly support the existence of at least two distinct functional Upf1 complexes in the NMD pathway.


Subject(s)
Nonsense Mediated mRNA Decay , RNA Helicases , RNA Helicases/genetics , RNA Helicases/metabolism , Ribosomes/genetics , Ribosomes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
3.
Proc Natl Acad Sci U S A ; 119(15): e2201632119, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35380903

ABSTRACT

Current chemotherapy against Mycobacterium tuberculosis (Mtb), an important human pathogen, requires a multidrug regimen lasting several months. While efforts have been made to optimize therapy by exploiting drug­drug synergies, testing new drug combinations in relevant host environments remains arduous. In particular, host environments profoundly affect the bacterial metabolic state and drug efficacy, limiting the accuracy of predictions based on in vitro assays alone. In this study, we utilized conditional Mtb knockdown mutants of essential genes as an experimentally tractable surrogate for drug treatment and probe the relationship between Mtb carbon metabolism and chemical­genetic interactions (CGIs). We examined the antitubercular drugs isoniazid, rifampicin, and moxifloxacin and found that CGIs are differentially responsive to the metabolic state, defining both environment-independent and -dependent interactions. Specifically, growth on the in vivo­relevant carbon source, cholesterol, reduced rifampicin efficacy by altering mycobacterial cell surface lipid composition. We report that a variety of perturbations in cell wall synthesis pathways restore rifampicin efficacy during growth on cholesterol, and that both environment-independent and cholesterol-dependent in vitro CGIs could be leveraged to enhance bacterial clearance in the mouse infection model. Our findings present an atlas of chemical­genetic­environmental interactions that can be used to optimize drug­drug interactions, as well as provide a framework for understanding in vitro correlates of in vivo efficacy.


Subject(s)
Antitubercular Agents , Carbon , Cell Wall , Drug Interactions , Gene-Environment Interaction , Mycobacterium tuberculosis , Antitubercular Agents/pharmacology , Carbon/metabolism , Cell Wall/ultrastructure , Humans , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/ultrastructure
4.
Elife ; 112022 02 03.
Article in English | MEDLINE | ID: mdl-35112666

ABSTRACT

The outcome of an encounter with Mycobacterium tuberculosis (Mtb) depends on the pathogen's ability to adapt to the variable immune pressures exerted by the host. Understanding this interplay has proven difficult, largely because experimentally tractable animal models do not recapitulate the heterogeneity of tuberculosis disease. We leveraged the genetically diverse Collaborative Cross (CC) mouse panel in conjunction with a library of Mtb mutants to create a resource for associating bacterial genetic requirements with host genetics and immunity. We report that CC strains vary dramatically in their susceptibility to infection and produce qualitatively distinct immune states. Global analysis of Mtb transposon mutant fitness (TnSeq) across the CC panel revealed that many virulence pathways are only required in specific host microenvironments, identifying a large fraction of the pathogen's genome that has been maintained to ensure fitness in a diverse population. Both immunological and bacterial traits can be associated with genetic variants distributed across the mouse genome, making the CC a unique population for identifying specific host-pathogen genetic interactions that influence pathogenesis.


Subject(s)
Collaborative Cross Mice/genetics , Genetic Predisposition to Disease , Genetic Variation , Host-Pathogen Interactions/genetics , Mycobacterium tuberculosis/genetics , Tuberculosis/microbiology , Animals , Disease Models, Animal , Genotype , Male , Mice , Mycobacterium tuberculosis/pathogenicity , Phenotype
5.
RNA ; 27(9): 1046-1067, 2021 09.
Article in English | MEDLINE | ID: mdl-34162742

ABSTRACT

RNA exosomopathies, a growing family of diseases, are linked to missense mutations in genes encoding structural subunits of the evolutionarily conserved, 10-subunit exoribonuclease complex, the RNA exosome. This complex consists of a three-subunit cap, a six-subunit, barrel-shaped core, and a catalytic base subunit. While a number of mutations in RNA exosome genes cause pontocerebellar hypoplasia, mutations in the cap subunit gene EXOSC2 cause an apparently distinct clinical presentation that has been defined as a novel syndrome SHRF (short stature, hearing loss, retinitis pigmentosa, and distinctive facies). We generated the first in vivo model of the SHRF pathogenic amino acid substitutions using budding yeast by modeling pathogenic EXOSC2 missense mutations (p.Gly30Val and p.Gly198Asp) in the orthologous S. cerevisiae gene RRP4 The resulting rrp4 mutant cells show defects in cell growth and RNA exosome function. Consistent with altered RNA exosome function, we detect significant transcriptomic changes in both coding and noncoding RNAs in rrp4-G226D cells that model EXOSC2 p.Gly198Asp, suggesting defects in nuclear surveillance. Biochemical and genetic analyses suggest that the Rrp4 G226D variant subunit shows impaired interactions with key RNA exosome cofactors that modulate the function of the complex. These results provide the first in vivo evidence that pathogenic missense mutations present in EXOSC2 impair the function of the RNA exosome. This study also sets the stage to compare exosomopathy models to understand how defects in RNA exosome function underlie distinct pathologies.


Subject(s)
Exoribonucleases/genetics , Exosome Multienzyme Ribonuclease Complex/genetics , Mutation, Missense , RNA, Fungal/genetics , RNA-Binding Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Amino Acid Sequence , Amino Acid Substitution , Aspartic Acid/chemistry , Aspartic Acid/metabolism , Dwarfism/enzymology , Dwarfism/genetics , Dwarfism/pathology , Exoribonucleases/chemistry , Exoribonucleases/metabolism , Exosome Multienzyme Ribonuclease Complex/chemistry , Exosome Multienzyme Ribonuclease Complex/metabolism , Facies , Gene Expression , Glycine/chemistry , Glycine/metabolism , Hearing Loss/enzymology , Hearing Loss/genetics , Hearing Loss/pathology , Humans , Models, Biological , Models, Molecular , Protein Conformation , RNA, Fungal/chemistry , RNA, Fungal/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Retinitis Pigmentosa/enzymology , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/pathology , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Sequence Homology, Amino Acid , Syndrome
6.
mSystems ; 5(4)2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32753506

ABSTRACT

Effective tuberculosis treatment requires at least 6 months of combination therapy. Alterations in the physiological state of the bacterium during infection are thought to reduce drug efficacy and prolong the necessary treatment period, but the nature of these adaptations remain incompletely defined. To identify specific bacterial functions that limit drug effects during infection, we employed a comprehensive genetic screening approach to identify mutants with altered susceptibility to the first-line antibiotics in the mouse model. We identified many mutations that increase the rate of bacterial clearance, suggesting new strategies for accelerating therapy. In addition, the drug-specific effects of these mutations suggested that different antibiotics are limited by distinct factors. Rifampin efficacy is inferred to be limited by cellular permeability, whereas isoniazid is preferentially affected by replication rate. Many mutations that altered bacterial clearance in the mouse model did not have an obvious effect on drug susceptibility using in vitro assays, indicating that these chemical-genetic interactions tend to be specific to the in vivo environment. This observation suggested that a wide variety of natural genetic variants could influence drug efficacy in vivo without altering behavior in standard drug-susceptibility tests. Indeed, mutations in a number of the genes identified in our study are enriched in drug-resistant clinical isolates, identifying genetic variants that may influence treatment outcome. Together, these observations suggest new avenues for improving therapy, as well as the mechanisms of genetic adaptations that limit it.IMPORTANCE Understanding how Mycobacterium tuberculosis survives during antibiotic treatment is necessary to rationally devise more effective tuberculosis (TB) chemotherapy regimens. Using genome-wide mutant fitness profiling and the mouse model of TB, we identified genes that alter antibiotic efficacy specifically in the infection environment and associated several of these genes with natural genetic variants found in drug-resistant clinical isolates. These data suggest strategies for synergistic therapies that accelerate bacterial clearance, and they identify mechanisms of adaptation to drug exposure that could influence treatment outcome.

7.
Genetics ; 214(4): 839-854, 2020 04.
Article in English | MEDLINE | ID: mdl-32111629

ABSTRACT

Centromeric localization of CENP-A (Cse4 in Saccharomyces cerevisiae, CID in flies, CENP-A in humans) is essential for faithful chromosome segregation. Mislocalization of overexpressed CENP-A contributes to aneuploidy in yeast, flies, and humans, and is proposed to promote tumorigenesis in human cancers. Hence, defining molecular mechanisms that promote or prevent mislocalization of CENP-A is an area of active investigation. In budding yeast, evolutionarily conserved histone chaperones Scm3 and chromatin assembly factor-1 (CAF-1) promote localization of Cse4 to centromeric and noncentromeric regions, respectively. Ubiquitin ligases, such as Psh1 and Slx5, and histone chaperones (HIR complex) regulate proteolysis of overexpressed Cse4 and prevent its mislocalization to noncentromeric regions. In this study, we have identified sumoylation sites lysine (K) 215/216 in the C terminus of Cse4, and shown that sumoylation of Cse4 K215/216 facilitates its genome-wide deposition into chromatin when overexpressed. Our results showed reduced levels of sumoylation of mutant Cse4 K215/216R/A [K changed to arginine (R) or alanine (A)] and reduced interaction of mutant Cse4 K215/216R/A with Scm3 and CAF-1 when compared to wild-type Cse4 Consistent with these results, levels of Cse4 K215/216R/A in the chromatin fraction and localization to centromeric and noncentromeric regions were reduced. Furthermore, in contrast to GAL-CSE4, which exhibits Synthetic Dosage Lethality (SDL) in psh1∆, slx5∆, and hir2∆ strains, GAL-cse4K215/216R does not exhibit SDL in these strains. Taken together, our results show that deposition of Cse4 into chromatin is facilitated by its C-terminal sumoylation.


Subject(s)
Chromatin/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Sumoylation , Chromatin Assembly Factor-1/genetics , Chromatin Assembly Factor-1/metabolism , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/genetics , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Peptide Elongation Factors/genetics , Peptide Elongation Factors/metabolism , Protein Domains , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Synthetic Lethal Mutations , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
8.
PLoS Genet ; 16(2): e1008597, 2020 02.
Article in English | MEDLINE | ID: mdl-32032354

ABSTRACT

Restricting the localization of the histone H3 variant CENP-A (Cse4 in yeast, CID in flies) to centromeres is essential for faithful chromosome segregation. Mislocalization of CENP-A leads to chromosomal instability (CIN) in yeast, fly and human cells. Overexpression and mislocalization of CENP-A has been observed in many cancers and this correlates with increased invasiveness and poor prognosis. Yet genes that regulate CENP-A levels and localization under physiological conditions have not been defined. In this study we used a genome-wide genetic screen to identify essential genes required for Cse4 homeostasis to prevent its mislocalization for chromosomal stability. We show that two Skp, Cullin, F-box (SCF) ubiquitin ligases with the evolutionarily conserved F-box proteins Met30 and Cdc4 interact and cooperatively regulate proteolysis of endogenous Cse4 and prevent its mislocalization for faithful chromosome segregation under physiological conditions. The interaction of Met30 with Cdc4 is independent of the D domain, which is essential for their homodimerization and ubiquitination of other substrates. The requirement for both Cdc4 and Met30 for ubiquitination is specifc for Cse4; and a common substrate for Cdc4 and Met30 has not previously been described. Met30 is necessary for the interaction between Cdc4 and Cse4, and defects in this interaction lead to stabilization and mislocalization of Cse4, which in turn contributes to CIN. We provide the first direct link between Cse4 mislocalization to defects in kinetochore structure and show that SCF-mediated proteolysis of Cse4 is a major mechanism that prevents stable maintenance of Cse4 at non-centromeric regions, thus ensuring faithful chromosome segregation. In summary, we have identified essential pathways that regulate cellular levels of endogenous Cse4 and shown that proteolysis of Cse4 by SCF-Met30/Cdc4 prevents mislocalization and CIN in unperturbed cells.


Subject(s)
Cell Cycle Proteins/metabolism , Chromosomal Instability , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/metabolism , F-Box Proteins/metabolism , SKP Cullin F-Box Protein Ligases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Ubiquitin-Protein Ligase Complexes/metabolism , Ubiquitin-Protein Ligases/metabolism , Centromere/metabolism , Chromosome Segregation , Protein Domains , Proteolysis , Ubiquitination
9.
mBio ; 10(6)2019 11 26.
Article in English | MEDLINE | ID: mdl-31772048

ABSTRACT

Host genetics plays an important role in determining the outcome of Mycobacterium tuberculosis infection. We previously found that Collaborative Cross (CC) mouse strains differ in their susceptibility to M. tuberculosis and that the CC042/GeniUnc (CC042) strain suffered from a rapidly progressive disease and failed to produce the protective cytokine gamma interferon (IFN-γ) in the lung. Here, we used parallel genetic and immunological approaches to investigate the basis of CC042 mouse susceptibility. Using a population derived from a CC001/Unc (CC001) × CC042 intercross, we mapped four quantitative trait loci (QTL) underlying tuberculosis immunophenotypes (Tip1 to Tip4). These included QTL that were associated with bacterial burden, IFN-γ production following infection, and an IFN-γ-independent mechanism of bacterial control. Further immunological characterization revealed that CC042 animals recruited relatively few antigen-specific T cells to the lung and that these T cells failed to express the integrin alpha L (αL; i.e., CD11a), which contributes to T cell activation and migration. These defects could be explained by a CC042 private variant in the Itgal gene, which encodes CD11a and is found within the Tip2 interval. This 15-bp deletion leads to aberrant mRNA splicing and is predicted to result in a truncated protein product. The ItgalCC042 genotype was associated with all measured disease traits, indicating that this variant is a major determinant of susceptibility in CC042 mice. The combined effect of functionally distinct Tip variants likely explains the profound susceptibility of CC042 mice and highlights the multigenic nature of tuberculosis control in the Collaborative Cross.IMPORTANCE The variable outcome of Mycobacterium tuberculosis infection observed in natural populations is difficult to model in genetically homogeneous small-animal models. The newly developed Collaborative Cross (CC) represents a reproducible panel of genetically diverse mice that display a broad range of phenotypic responses to infection. We explored the genetic basis of this variation, focusing on a CC line that is highly susceptible to M. tuberculosis infection. This study identified multiple quantitative trait loci associated with bacterial control and cytokine production, including one that is caused by a novel loss-of-function mutation in the Itgal gene, which is necessary for T cell recruitment to the infected lung. These studies verify the multigenic control of mycobacterial disease in the CC panel, identify genetic loci controlling diverse aspects of pathogenesis, and highlight the utility of the CC resource.


Subject(s)
Mycobacterium tuberculosis/physiology , Tuberculosis/genetics , Animals , Collaborative Cross Mice , Disease Models, Animal , Female , Genetic Predisposition to Disease , Genotype , Humans , Interferon-gamma/genetics , Interferon-gamma/immunology , Lung/immunology , Lung/microbiology , Male , Mice , Mycobacterium tuberculosis/genetics , Quantitative Trait Loci , T-Lymphocytes/immunology , Tuberculosis/immunology , Tuberculosis/microbiology
10.
BMC Bioinformatics ; 20(1): 603, 2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31752678

ABSTRACT

BACKGROUND: Deep sequencing of transposon mutant libraries (or TnSeq) is a powerful method for probing essentiality of genomic loci under different environmental conditions. Various analytical methods have been described for identifying conditionally essential genes whose tolerance for insertions varies between two conditions. However, for large-scale experiments involving many conditions, a method is needed for identifying genes that exhibit significant variability in insertions across multiple conditions. RESULTS: In this paper, we introduce a novel statistical method for identifying genes with significant variability of insertion counts across multiple conditions based on Zero-Inflated Negative Binomial (ZINB) regression. Using likelihood ratio tests, we show that the ZINB distribution fits TnSeq data better than either ANOVA or a Negative Binomial (in a generalized linear model). We use ZINB regression to identify genes required for infection of M. tuberculosis H37Rv in C57BL/6 mice. We also use ZINB to perform a analysis of genes conditionally essential in H37Rv cultures exposed to multiple antibiotics. CONCLUSIONS: Our results show that, not only does ZINB generally identify most of the genes found by pairwise resampling (and vastly out-performs ANOVA), but it also identifies additional genes where variability is detectable only when the magnitudes of insertion counts are treated separately from local differences in saturation, as in the ZINB model.


Subject(s)
DNA Transposable Elements/genetics , Databases, Genetic , High-Throughput Nucleotide Sequencing , Models, Statistical , Animals , Anti-Bacterial Agents/pharmacology , Binomial Distribution , Genes, Essential , Likelihood Functions , Linear Models , Mice, Inbred C57BL , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics
11.
mBio ; 10(4)2019 07 30.
Article in English | MEDLINE | ID: mdl-31363023

ABSTRACT

Despite the administration of multiple drugs that are highly effective in vitro, tuberculosis (TB) treatment requires prolonged drug administration and is confounded by the emergence of drug-resistant strains. To understand the mechanisms that limit antibiotic efficacy, we performed a comprehensive genetic study to identify Mycobacterium tuberculosis genes that alter the rate of bacterial clearance in drug-treated mice. Several functionally distinct bacterial genes were found to alter bacterial clearance, and prominent among these was the glpK gene that encodes the glycerol-3-kinase enzyme that is necessary for glycerol catabolism. Growth on glycerol generally increased the sensitivity of M. tuberculosis to antibiotics in vitro, and glpK-deficient bacteria persisted during antibiotic treatment in vivo, particularly during exposure to pyrazinamide-containing regimens. Frameshift mutations in a hypervariable homopolymeric region of the glpK gene were found to be a specific marker of multidrug resistance in clinical M. tuberculosis isolates, and these loss-of-function alleles were also enriched in extensively drug-resistant clones. These data indicate that frequently observed variation in the glpK coding sequence produces a drug-tolerant phenotype that can reduce antibiotic efficacy and may contribute to the evolution of resistance.IMPORTANCE TB control is limited in part by the length of antibiotic treatment needed to prevent recurrent disease. To probe mechanisms underlying survival under antibiotic pressure, we performed a genetic screen for M. tuberculosis mutants with altered susceptibility to treatment using the mouse model of TB. We identified multiple genes involved in a range of functions which alter sensitivity to antibiotics. In particular, we found glycerol catabolism mutants were less susceptible to treatment and that common variation in a homopolymeric region in the glpK gene was associated with drug resistance in clinical isolates. These studies indicate that reversible high-frequency variation in carbon metabolic pathways can produce phenotypically drug-tolerant clones and have a role in the development of resistance.


Subject(s)
Antitubercular Agents/pharmacology , Glycerol Kinase/genetics , Mycobacterium tuberculosis/genetics , Drug Resistance, Multiple, Bacterial/genetics , Microbial Sensitivity Tests , Mycobacterium tuberculosis/drug effects
12.
Mol Biol Cell ; 30(8): 1020-1036, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30726152

ABSTRACT

Evolutionarily conserved polo-like kinase, Cdc5 (Plk1 in humans), associates with kinetochores during mitosis; however, the role of cell cycle-dependent centromeric ( CEN) association of Cdc5 and its substrates that exclusively localize to the kinetochore have not been characterized. Here we report that evolutionarily conserved CEN histone H3 variant, Cse4 (CENP-A in humans), is a substrate of Cdc5, and that the cell cycle-regulated association of Cse4 with Cdc5 is required for cell growth. Cdc5 contributes to Cse4 phosphorylation in vivo and interacts with Cse4 in mitotic cells. Mass spectrometry analysis of in vitro kinase assays showed that Cdc5 phosphorylates nine serine residues clustered within the N-terminus of Cse4. Strains with cse4-9SA exhibit increased errors in chromosome segregation, reduced levels of CEN-associated Mif2 and Mcd1/Scc1 when combined with a deletion of MCM21. Moreover, the loss of Cdc5 from the CEN chromatin contributes to defects in kinetochore integrity and reduction in CEN-associated Cse4. The cell cycle-regulated association of Cdc5 with Cse4 is essential for cell viability as constitutive association of Cdc5 with Cse4 at the kinetochore leads to growth defects. In summary, our results have defined a role for Cdc5-mediated Cse4 phosphorylation in faithful chromosome segregation.


Subject(s)
Cell Cycle Proteins/metabolism , Chromosome Segregation/physiology , Protein Serine-Threonine Kinases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces/metabolism , Cell Cycle Proteins/physiology , Centromere/metabolism , Centromere Protein A/physiology , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/metabolism , Histones/metabolism , Kinetochores/metabolism , Mitosis , Nuclear Proteins/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/physiology , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/physiology , Saccharomycetales/metabolism , Schizosaccharomyces pombe Proteins/metabolism
13.
Cell Chem Biol ; 25(12): 1495-1505.e3, 2018 12 20.
Article in English | MEDLINE | ID: mdl-30318462

ABSTRACT

Upon inhibition of respiration, which occurs in hypoxic or nitric oxide-containing host microenvironments, Mycobacterium tuberculosis (Mtb) adopts a non-replicating "quiescent" state and becomes relatively unresponsive to antibiotic treatment. We used comprehensive mutant fitness analysis to identify regulatory and metabolic pathways that are essential for the survival of quiescent Mtb. This genetic study identified a protein acetyltransferase (Mt-Pat/Rv0998) that promoted survival and altered the flux of carbon from oxidative to reductive tricarboxylic acid (TCA) reactions. Reductive TCA requires malate dehydrogenase (MDH) and maintains the redox state of the NAD+/NADH pool. Genetic or chemical inhibition of MDH resulted in rapid cell death in both hypoxic cultures and in murine lung. These phenotypic data, in conjunction with significant structural differences between human and mycobacterial MDH enzymes that could be exploited for drug development, suggest a new strategy for eradicating quiescent bacteria.


Subject(s)
Hypoxia/metabolism , Lysine Acetyltransferases/metabolism , Mycobacterium tuberculosis/enzymology , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Hypoxia/drug therapy , Hypoxia/genetics , Lysine Acetyltransferases/antagonists & inhibitors , Lysine Acetyltransferases/genetics , Mice , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/metabolism
14.
Front Genet ; 9: 379, 2018.
Article in English | MEDLINE | ID: mdl-30279700

ABSTRACT

Cell viability and gene expression profiles are altered in cellular models of neurodegenerative disorders such as Huntington's Disease (HD). Using the yeast model system, we show that the SUMO-targeted ubiquitin ligase (STUbL) Slx5 reduces the toxicity and abnormal transcriptional activity associated with a mutant, aggregation-prone fragment of huntingtin (Htt), the causative agent of HD. We demonstrate that expression of an aggregation-prone Htt construct with 103 glutamine residues (103Q), but not the non-expanded form (25Q), results in severe growth defects in slx5Δ and slx8Δ cells. Since Slx5 is a nuclear protein and because Htt expression affects gene transcription, we assessed the effect of STUbLs on the transcriptional properties of aggregation-prone Htt. Expression of Htt 25Q and 55Q fused to the Gal4 activation domain (AD) resulted in reporter gene auto-activation. Remarkably, the auto-activation of Htt constructs was abolished by expression of Slx5 fused to the Gal4 DNA-binding domain (BD-Slx5). In support of these observations, RNF4, the human ortholog of Slx5, curbs the aberrant transcriptional activity of aggregation-prone Htt in yeast and a variety of cultured human cell lines. Functionally, we find that an extra copy of SLX5 specifically reduces Htt aggregates in the cytosol as well as chromatin-associated Htt aggregates in the nucleus. Finally, using RNA sequencing, we identified and confirmed specific targets of Htt's transcriptional activity that are modulated by Slx5. In summary, this study of STUbLs uncovers a conserved pathway that counteracts the accumulation of aggregating, transcriptionally active Htt (and possibly other poly-glutamine expanded proteins) on chromatin in both yeast and in mammalian cells.

15.
Genetics ; 210(1): 203-218, 2018 09.
Article in English | MEDLINE | ID: mdl-30012561

ABSTRACT

Centromeric localization of the evolutionarily conserved centromere-specific histone H3 variant CENP-A (Cse4 in yeast) is essential for faithful chromosome segregation. Overexpression and mislocalization of CENP-A lead to chromosome segregation defects in yeast, flies, and human cells. Overexpression of CENP-A has been observed in human cancers; however, the molecular mechanisms preventing CENP-A mislocalization are not fully understood. Here, we used a genome-wide synthetic genetic array (SGA) to identify gene deletions that exhibit synthetic dosage lethality (SDL) when Cse4 is overexpressed. Deletion for genes encoding the replication-independent histone chaperone HIR complex (HIR1, HIR2, HIR3, HPC2) and a Cse4-specific E3 ubiquitin ligase, PSH1, showed highest SDL. We defined a role for Hir2 in proteolysis of Cse4 that prevents mislocalization of Cse4 to noncentromeric regions for genome stability. Hir2 interacts with Cse4 in vivo, and hir2∆ strains exhibit defects in Cse4 proteolysis and stabilization of chromatin-bound Cse4 Mislocalization of Cse4 to noncentromeric regions with a preferential enrichment at promoter regions was observed in hir2∆ strains. We determined that Hir2 facilitates the interaction of Cse4 with Psh1, and that defects in Psh1-mediated proteolysis contribute to increased Cse4 stability and mislocalization of Cse4 in the hir2∆ strain. In summary, our genome-wide screen provides insights into pathways that regulate proteolysis of Cse4 and defines a novel role for the HIR complex in preventing mislocalization of Cse4 by facilitating proteolysis of Cse4, thereby promoting genome stability.


Subject(s)
Centromere Protein A/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Centromere/metabolism , Centromere Protein A/genetics , Chromatin/metabolism , Chromosome Segregation , Genome-Wide Association Study , Histone Chaperones/genetics , Histone Chaperones/metabolism , Histones/metabolism , Kinetochores/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Binding , Repressor Proteins/genetics , Repressor Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomycetales/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination
16.
G3 (Bethesda) ; 8(4): 1215-1223, 2018 03 28.
Article in English | MEDLINE | ID: mdl-29432128

ABSTRACT

Stringent regulation of cellular levels of evolutionarily conserved centromeric histone H3 variant (CENP-A in humans, CID in flies, Cse4 in yeast) prevents its mislocalization to non-centromeric chromatin. Overexpression and mislocalization of CENP-A has been observed in cancers and leads to aneuploidy in yeast, flies, and human cells. Ubiquitin-mediated proteolysis of Cse4 by E3 ligases such as Psh1 and Sumo-Targeted Ubiquitin Ligase (STUbL) Slx5 prevent mislocalization of Cse4. Previously, we identified Siz1 and Siz2 as the major E3 ligases for sumoylation of Cse4. In this study, we have identified lysine 65 (K65) in Cse4 as a site that regulates sumoylation and ubiquitin-mediated proteolysis of Cse4 by Slx5. Strains expressing cse4 K65R exhibit reduced levels of sumoylated and ubiquitinated Cse4 in vivo Furthermore, co-immunoprecipitation experiments reveal reduced interaction of cse4 K65R with Slx5, leading to increased stability and mislocalization of cse4 K65R under normal physiological conditions. Based on the increased stability of cse4 K65R in psh1∆ strains but not in slx5∆ strains, we conclude that Slx5 targets sumoylated Cse4 K65 for ubiquitination-mediated proteolysis independent of Psh1. In summary, we have identified and characterized the physiological role of Cse4 K65 in sumoylation, ubiquitin-mediated proteolysis, and localization of Cse4 for genome stability.


Subject(s)
Centromere/metabolism , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Histones/metabolism , Proteolysis , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Sumoylation , Chromosome Segregation , Lysine/metabolism , Mutant Proteins/metabolism , Mutation/genetics , Protein Binding , Protein Transport , Ubiquitination
17.
Nat Microbiol ; 2: 17072, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28504669

ABSTRACT

Nitric oxide contributes to protection from tuberculosis. It is generally assumed that this protection is due to direct inhibition of Mycobacterium tuberculosis growth, which prevents subsequent pathological inflammation. In contrast, we report that nitric oxide primarily protects mice by repressing an interleukin-1- and 12/15-lipoxygenase-dependent neutrophil recruitment cascade that promotes bacterial replication. Using M. tuberculosis mutants as indicators of the pathogen's environment, we inferred that granulocytic inflammation generates a nutrient-replete niche that supports M. tuberculosis growth. Parallel clinical studies indicate that a similar inflammatory pathway promotes tuberculosis in patients. The human 12/15-lipoxygenase orthologue, ALOX12, is expressed in cavitary tuberculosis lesions; the abundance of its products correlates with the number of airway neutrophils and bacterial burden and a genetic polymorphism that increases ALOX12 expression is associated with tuberculosis risk. These data suggest that M. tuberculosis exploits neutrophilic inflammation to preferentially replicate at sites of tissue damage that promote contagion.


Subject(s)
Inflammation/pathology , Mycobacterium tuberculosis/immunology , Neutrophils/immunology , Nitric Oxide/metabolism , Tuberculosis/pathology , Animals , Arachidonate 12-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/metabolism , Disease Models, Animal , Down-Regulation , Humans , Interleukin-1/antagonists & inhibitors , Mice, Inbred C57BL
18.
Nucleic Acids Res ; 45(11): e93, 2017 Jun 20.
Article in English | MEDLINE | ID: mdl-28334803

ABSTRACT

Tn-Seq is an experimental method for probing the functions of genes through construction of complex random transposon insertion libraries and quantification of each mutant's abundance using next-generation sequencing. An important emerging application of Tn-Seq is for identifying genetic interactions, which involves comparing Tn mutant libraries generated in different genetic backgrounds (e.g. wild-type strain versus knockout strain). Several analytical methods have been proposed for analyzing Tn-Seq data to identify genetic interactions, including estimating relative fitness ratios and fitting a generalized linear model. However, these have limitations which necessitate an improved approach. We present a hierarchical Bayesian method for identifying genetic interactions through quantifying the statistical significance of changes in enrichment. The analysis involves a four-way comparison of insertion counts across datasets to identify transposon mutants that differentially affect bacterial fitness depending on genetic background. Our approach was applied to Tn-Seq libraries made in isogenic strains of Mycobacterium tuberculosis lacking three different genes of unknown function previously shown to be necessary for optimal fitness during infection. By analyzing the libraries subjected to selection in mice, we were able to distinguish several distinct classes of genetic interactions for each target gene that shed light on their functions and roles during infection.


Subject(s)
Epistasis, Genetic , Genes, Bacterial , Sequence Analysis, DNA/methods , Algorithms , Bacterial Proteins/genetics , Bayes Theorem , DNA Transposable Elements , Data Interpretation, Statistical , Gene Frequency , Gene Knockout Techniques , Gene Library , Models, Genetic , Monte Carlo Method , Mutagenesis, Insertional , Mycobacterium tuberculosis/genetics
19.
mBio ; 7(5)2016 09 20.
Article in English | MEDLINE | ID: mdl-27651361

ABSTRACT

UNLABELLED: The outcome of Mycobacterium tuberculosis infection and the immunological response to the bacillus Calmette-Guerin (BCG) vaccine are highly variable in humans. Deciphering the relative importance of host genetics, environment, and vaccine preparation for the efficacy of BCG has proven difficult in natural populations. We developed a model system that captures the breadth of immunological responses observed in outbred individual mice, which can be used to understand the contribution of host genetics to vaccine efficacy. This system employs a panel of highly diverse inbred mouse strains, consisting of the founders and recombinant progeny of the "Collaborative Cross" project. Unlike natural populations, the structure of this panel allows the serial evaluation of genetically identical individuals and the quantification of genotype-specific effects of interventions such as vaccination. When analyzed in the aggregate, our panel resembled natural populations in several important respects: the animals displayed a broad range of susceptibility to M. tuberculosis, differed in their immunological responses to infection, and were not durably protected by BCG vaccination. However, when analyzed at the genotype level, we found that these phenotypic differences were heritable. M. tuberculosis susceptibility varied between lines, from extreme sensitivity to progressive M. tuberculosis clearance. Similarly, only a minority of the genotypes was protected by vaccination. The efficacy of BCG was genetically separable from susceptibility to M. tuberculosis, and the lack of efficacy in the aggregate analysis was driven by nonresponsive lines that mounted a qualitatively distinct response to infection. These observations support an important role for host genetic diversity in determining BCG efficacy and provide a new resource to rationally develop more broadly efficacious vaccines. IMPORTANCE: Tuberculosis (TB) remains an urgent global health crisis, and the efficacy of the currently used TB vaccine, M. bovis BCG, is highly variable. The design of more broadly efficacious vaccines depends on understanding the factors that limit the protection imparted by BCG. While these complex factors are difficult to disentangle in natural populations, we used a model population of mice to understand the role of host genetic composition in BCG efficacy. We found that the ability of BCG to protect mice with different genotypes was remarkably variable. The efficacy of BCG did not depend on the intrinsic susceptibility of the animal but, instead, correlated with qualitative differences in the immune responses to the pathogen. These studies suggest that host genetic polymorphism is a critical determinant of vaccine efficacy and provide a model system to develop interventions that will be useful in genetically diverse populations.


Subject(s)
BCG Vaccine/immunology , Genetic Predisposition to Disease , Host-Pathogen Interactions , Tuberculosis/genetics , Tuberculosis/prevention & control , Animals , Animals, Outbred Strains , BCG Vaccine/administration & dosage , Disease Models, Animal , Genetic Variation , Genotype , Host-Pathogen Interactions/genetics , Humans , Mice , Mycobacterium tuberculosis/genetics , Tuberculosis/microbiology
20.
Mol Biol Cell ; 27(14): 2286-300, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27226485

ABSTRACT

Sister chromatid cohesion is essential for tension-sensing mechanisms that monitor bipolar attachment of replicated chromatids in metaphase. Cohesion is mediated by the association of cohesins along the length of sister chromatid arms. In contrast, centromeric cohesin generates intrastrand cohesion and sister centromeres, while highly cohesin enriched, are separated by >800 nm at metaphase in yeast. Removal of cohesin is necessary for sister chromatid separation during anaphase, and this is regulated by evolutionarily conserved polo-like kinase (Cdc5 in yeast, Plk1 in humans). Here we address how high levels of cohesins at centromeric chromatin are removed. Cdc5 associates with centromeric chromatin and cohesin-associated regions. Maximum enrichment of Cdc5 in centromeric chromatin occurs during the metaphase-to-anaphase transition and coincides with the removal of chromosome-associated cohesin. Cdc5 interacts with cohesin in vivo, and cohesin is required for association of Cdc5 at centromeric chromatin. Cohesin removal from centromeric chromatin requires Cdc5 but removal at distal chromosomal arm sites does not. Our results define a novel role for Cdc5 in regulating removal of centromeric cohesins and faithful chromosome segregation.


Subject(s)
Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Mitosis/physiology , Protein Serine-Threonine Kinases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/enzymology , Anaphase , Centromere/enzymology , Centromere/metabolism , Chromatids/metabolism , Chromatin/metabolism , Chromosome Segregation , Metaphase , Nuclear Proteins/genetics , Proto-Oncogene Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Cohesins , Polo-Like Kinase 1
SELECTION OF CITATIONS
SEARCH DETAIL
...